Multiscale modelling of tumour growth and therapy: the influence of vessel normalisation on chemotherapy
نویسندگان
چکیده
Following the poor clinical results of antiangiogenic drugs, particularly when applied in isolation, tumour biologists and clinicians are now turning to combinations of therapies in order to obtain better results. One of these involves vessel normalisation strategies. In this paper, we investigate the effects on tumour growth of combinations of antiangiogenic and standard cytotoxic drugs, taking into account vessel normalisation. An existing multiscale framework is extended to include new elements such as tumour-induced vessel dematuration. Detailed simulations of our multiscale framework allow us to suggest one possible mechanism for the observed vessel normalisation-induced improvement in the efficacy of cytotoxic drugs: vessel dematuration produces extensive regions occupied by quiescent (oxygen-starved) cells which the cytotoxic drug fails to kill. Vessel normalisation reduces the size of these regions, thereby allowing the chemotherapeutic agent to act on a greater number of cells.
منابع مشابه
Modelling Tumor-induced Angiogenesis: Combination of Stochastic Sprout Spacing and Sprout Progression
Background: Angiogenesis initiated by cancerous cells is the process by which new blood vessels are formed to enhance oxygenation and growth of tumor. Objective: In this paper, we present a new multiscale mathematical model for the formation of a vascular network in tumor angiogenesis process. Methods: Our model couples an improved sprout spacing model as a stochastic mathematical model of spro...
متن کاملTumour blood vessel normalisation by prolyl hydroxylase inhibitor repaired sensitivity to chemotherapy in a tumour mouse model
Blood vessels are important tissue structures that deliver oxygen and nutrition. In tumour tissue, abnormal blood vessels, which are hyperpermeable and immature, are often formed; these tissues also have irregular vascularisation and intravasation. This situation leads to hypoperfusion in tumour tissue along with low oxygen and nutrition depletion; this is also called the tumour microenvironmen...
متن کاملMultiscale Modelling of Vascular Tumour Growth in 3D: The Roles of Domain Size and Boundary Conditions
We investigate a three-dimensional multiscale model of vascular tumour growth, which couples blood flow, angiogenesis, vascular remodelling, nutrient/growth factor transport, movement of, and interactions between, normal and tumour cells, and nutrient-dependent cell cycle dynamics within each cell. In particular, we determine how the domain size, aspect ratio and initial vascular network influe...
متن کاملTargeting tumour vasculature as a cancer treatment
Modelling blood flow and capillary growth in tumours has been the focus of several research groups with the aim of generating theoretical models that can be used to predict biological behaviour within these systems. Since dysfunctional angiogenesis is seen in a wide range of pathological conditions ranging from cardiovascular, to arthritis, to diabetes, it is easy to see how these models may ha...
متن کاملSystems oncology: towards patient-specific treatment regimes informed by multiscale mathematical modelling.
The multiscale complexity of cancer as a disease necessitates a corresponding multiscale modelling approach to produce truly predictive mathematical models capable of improving existing treatment protocols. To capture all the dynamics of solid tumour growth and its progression, mathematical modellers need to couple biological processes occurring at various spatial and temporal scales (from gene...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006